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Abstract. Amplitudes for a number of three-dimensional king model series have been 
estimated from recently extended series expansions. The amplitudes have then been used 
to re-estimate the field and temperature scaling parameters that are fundamental to the 
Generalized Law of Corresponding States. These new scaling parameters have been used 
(i) to estimate the amplitudes ofthe next most singular term in the high-temperature suscepti- 
bility for the four common three-dimensional lattices, and (ii) to show that an earlier con- 
jecture, that the field scaling parameter n, is the same for the king and spherical models, is 
unlikely to hold. 

1. Introduction 

In this paper we continue the investigation started in the preceding paper (Guttmann 
1975, to be referred to as I ) .  In that paper we studied the susceptibility amplitudes of the 
two-dimensional Ising model, while in this paper our attention is directed to the three- 
dimensional Ising model. 

For the three-dimensional Ising model, unlike its two-dimensional counterpart, 
we have no exact knowledge of critical points, critical exponents or any non-trivial 
thermodynamic functions, but only an extensive body of numerical information. We 
will now summarize the contemporary extensions to this body of information. 

Recently the three-dimensional high-temperature susceptibility series have been 
extended by Sykes er a1 (1972a) for the simple cubic (sc), body-centred cubic (BCC) and 
face-centred cubic (FCC) lattices, and by Gaunt and Sykes (1973) for the diamond (D) 
lattice. Using these extended series those authors were able to make more accurate 
estimates of the critical temperatures. Their results for the critical temperatures are 
summarized in table 1. They also obtained more accurate estimates of the ferromagnetic 
susceptibility amplitudes, C i  in the notation of I, for the SC, BCC and FCC lattices. For 
the diamond lattice no new determination of C; has been published, so we have estimated 
this, as described in 9 2 .  The amplitudes C,' are also given in table 1. 

The amplitudes of the critical isotherm series have also been extended and re-. 
examined by Gaunt and Sykes (1972). This amplitude is defined by 

1 - exp( - 2 m H / k T )  - D M ;  T =  T , ,  H + O+. (1.1) 
Gaunt and Sykes found 6 = 5, within 1 %, and obtained the estimates of D quoted in 
table 1. 
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Table 1. Critical temperature and critical amplitude estimates for the three-dimensional 
Ising model. 

Lattice D sc BCC FCC 

Critical'\ 
parameter '\ , 

L', = tanh(J/kT,) 0.353806 f 0000012 0.21 8 I 3  k O.oooO1 0.1 561 2 k O~oooO3 0.101 740 k OfOCO05 
K ,  = J!kT, 0~369787+0~oooO15 0,22169 k04W'Ml 0.15741 +000003 0,102093 +0,000005 
U, = e-4K= 0,227831 kO~oooO13 0.411985+0.oooO2 0~53278~0~oooO6 0,664731 k0~000017 

1.17 17 k 0 4 "  1,0582 kO.001 0.985 k 0.003 0,971 F0.002 
D 0.390 k 0.01 5 0.535 k 0.0 15 0.66 k 0.02 0.71 5 + 0.01 5 
c,+ 

For the spontaneous magnetization, extended series have been published by Sykes 
et al (1973), and the critical behaviour studied by Gaunt and Sykes (1973). They re- 
affirmed the generally accepted result /? = & where p is the exponent characterizing 
the vanishing of the spontaneous magnetization as T + Tc-, for all three-dimensional 
lattices, though the low-temperature susceptibility exponent y'  as T + Tc- has still not 
been unambiguously determined. For this reason we have not attempted a re-determina- 
tion of the low-temperature susceptibility amplitudes, since estimates of these depend 
on the value of y'. However, using the value /? = & and the values of the critical tem- 
peratures given in table 1, we have been able to obtain new estimates of the spontaneous 
magnetization amplitudes B from the extended series of Sykes er al(l973). 

Given the estimates of C,' and D in table 1 and combining them with the newly 
determined estimates of C,' for the diamond lattice and B for all lattices, we re-examine 
the Generalized Law of Corresponding States as it applies to the three-dimensional 
Ising model. In the notation of I we have estimated the temperature and field scaling 
parameters g, and n, respectively. With our more precise estimates of the various 
critical amplitudes, the tighter confidence limits on nx suggest that an earlier conjecture 
of Betts et al(1971), which suggested that nx is the same for the three-dimensional Ising 
model and the spherical model, does not hold. 

From these estimates of nx and g, we have estimated the amplitude of the next most 
singular term in the susceptibility, C:, and compared this to the series analysis predic- 
tions (where available). We have also estimated the specific heat high-temperature 
amplitudes, A,', and compared these to series analysis predictions. Reasons are given 
for preferring these estimates to those from series expansions. 

2. Amplitude estimations 

Using the critical temperature quoted in table 1, the generally accepted high-temperature 
susceptibility critical exponent y = 2 and the 22-term susceptibility expansion 

kTxo(t')/m2 = a,u" 
n B O  

given by Gaunt and Sykes (1973), we have estimated the high-temperature susceptibility 
amplitude of the diamond lattice from the sequence b, = u ~ u , , / ~ ( - ~ ' ~ ) ~ .  The last 10 terms 
in this sequence, b, ,  - b z 2 ,  are 1~049306,1~048573,1~048838,1~048450,1~048771, 1.048380, 
1.048566, 1648293, 1.048475, 1.048227. These form an oscillatory decreasing sequence 
due to the presence of additional singularities at - U', and f iu, . However, alternate terms 
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may be linearly extrapolated and in this way we estimate the limit to be 1.0476 +00006, 
from which follows 

C: = 1~1717+0*0007, (2.1) 

as entered in table 1. 
For the spontaneous magnetization series I,(u) = Zn2, c,u” on the D, sc, BCC and 

FCC lattices, we have proceeded by forming Pade approximants to ( U ,  - u ) ( l , ( ~ i ) ) -  
with 1-3 = & and U, as given in table 1. The Pade tables so obtained for the four lattices 
are shown in tables 2,3,4 and 5 for the D, S C ,  BCC and FCC lattices respectively. The table 
entries appear to be converging to the following limits : 

0.0655 f 04)002 (D) 0.086333 + O.ooOo5 (SC) 
(2.2) 

0.0905 + 0.0002 (BCC) 0.0764 0*00O2 (FCC) 

Table 2. Pade approximants to (U, - u ) ( I , , ( u ) ) - l ~ p ~ u = u c  for the diamond lattice. 

N [N - l/N] [N/NI [N + 1/NI 

3 0.067 12 0.06648 0.06606 
4 0.06526 0.06584 0.06584 
5 0.06584 0.06584 0,06548 
6 GO6573 0.06565 0.06563 
7 0.06562 0.06563 0,06563 
8 0.06560 

Table 3. Pade approximants to  ( u c -  U ) ~ / ~ ( U ) ) ~ ” ~ ~ ~ ~ ~ ~  for the simple cubic lattice. 

N [N - l/Nj 

0.08 77 19 
0.087249 
0.08 5738 
0.086490 
0.086364 
0.08633 7 
0.086333 

0,087494 
0.087688 
0,086844 
0,086367 
0.086368 
0.0863 33 
0.08 63 3 3 

0,087146 
0,075673 
0.086346 
0.086364 
0.08 6 3 5 5 
0.086333 

Table 4. Pade approximants to (uc-  u ) ( I o ( u ) ) - ” p ~ v = u c  for the body-centred cubic lattice 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0.0907503 
0.09 1303 1 
Oa9099 1 1 
00915583 
0,0905738 
00905700 
0.0907 157 
0.0907 139 
0.0907 743 
0.0902933 

0.0915790 
0.0924668 
0,0908 7 3 6 
0.090634 1 
00905955 
0.0906285 
0.0907090 
0,0906770 
0.0904836 
00%4236 

0.09 1 1674 
0.0907657 
0.0908 123 
0,09055 12 
0,0905318 
0.0906834 
0.0907889 
0.0905498 
0,0906395 
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Table 5. Pade approximants to (U, - u ) ( l o ( u ) ) -  i ' ' l u = u c  for the face-centred cubic lattice 

N [ N  - ] / N I  [NINI  [ N  + 1 / N ]  

10 0,0767222 0.0769014 0,0765348 
11 0.0765860 0.075 5407 0.076363 1 
12 0.0763977 0.0763037 0,0765 198 
13 0.0756710 0,07621 23 0,0762825 
14 0.07632 16 0.0762740 0.076279 1 
15 0,0762842 0.076259 1 0,0763059 
16 0.0763472 0.0763608 0.07655 10 
17 0,0763409 0,0763894 0.0763764 
18 0.0763797 0,0763878 0.07641 84 
19 0.0760977 0.0763687 0.0761 595 
20 0.0763338 0.0773 160 

from which we calculate the amplitudes Bo as 

B = 1.6684+0.0016 (D) B = 1.5696+0*0003 ( S C )  

B = 1 ~ 5 0 5 9 ~ 0 ~ 0 0 1 0  (BCC) B = 1.4861 +0@013 (FCC). 
(2.3) 

The confidence limits in (2.3) include errors due to the imprecise knowledge of the critical 
temperature. In 4 3 we use these amplitudes to estimate the scaling parameters n, and 
g, as used in the Generalized Law of Corresponding States (see I and Betts et a /  1971). 

3. Scaling parameters 

The temperature scaling parameter g, is given for lattice X in terms of a standard lattice- 
for which we choose the FCC lattice-by (B,,/BF)l'o or equivalently by (DFCO+,F/DxCO+,x)li' 
(see I and Betts er a1 1971). Using the amplitudes in table 1, those in 5 2 and the values 
/? = and y = $, we obtain the estimates of g, shown in table 6. As can be seen for 
each lattice, agreement between the two estimates is good, though the estimates obtained 
from the spontaneous magnetization amplitudes are about an order of magnitude more 
accurate than those obtained from the magnetization and susceptibility amplitudes. 
This reflects the difficulty in precisely determining the magnetization amplitudes D ,  as 
discussed by Gaunt and Sykes (1972). 

Turning now to the field scaling parameter n x ,  this is given in terms of the standard 
FCC lattice by the expressions n x  = (C~,x/CO+,F)(Bx/BF)4 and equivalently by nx = DF/D,. 
These are also shown in table 6 and again we find that the estimate obtained from the 

Table 6.  Field and temperature scaling parameters for the three-dimensional lattices. 

FCC BCC SC I )  

gx = (Bx:BF)1"'5 I 1,043 f 0.005 1.19 I & 0.004 1.448 k 0008 
g, = (DFc~,FiDxco+.x)"'s 1 1.05k0.07 1.18 i 0.07 1.40 1 0.06 
nx = (c~,x/co+.~)(Bx!B~)~ 1 1 ~ 0 7 0 ~ 0 ~ 0 1 1  1.356+0.010 1.917+0,009 
n x  = D , / D x  I 1.08 k0.06 1.34 k 0.07 1.83 10.1 1 
n, for spherical model 1 1.0655670 1.3945666 2 
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in-field magnetization series is less accurate than the other estimate though not as 
markedly so as for the parameter g,. Agreement between the two estimates is again 
seen to  be satisfactory. 

Using less accurate amplitude estimates than those quoted here, it was conjectured 
by Betts er al(1971) that nx for the Ising model and for other three-dimensional lattice 
models of the same class should be equal to nx for the spherical model. We have listed 
the spherical model n, values in table 6 also (these are exact), and it can be seen that the 
error bars for one n, estimate for the sc lattice and for both n, estimates for the diamond 
lattice clearly exclude the spherical model values. I t  thus appears that the conjecture 
does not hold and that, in general, n, for the Ising model is slightly less than the cor- 
responding spherical model value. 

Using the most accurate values of g, and n, from table 6, we estimate further critical 
amplitudes in Q 4 by assuming the validity of lattice-lattice scaling. 

4. Amplitude predictions 

Using the recently extended high-temperature specific heat series for the FCC lattice as 
given by Sykes er al(1972b), we have attempted to estimate the amplitude by following 
the technique of Sykes er al(1972a) and fitting the series to the Darboux form : 

C , = ,  = a ( l - ~ / ~ , ) - ' + b ( l  -v/u,) ' -"+c(~ -v/u,)*- '  (4.1) 

with a = Q and U ,  as given in table 1. Only the estimates of 'a' ere regular enough to 
allow extrapolation, the last seven estimates being 1.1 1257, 1.1 1487, 1.101 10, 1.09046, 
1.08516, 1.08310, 1.08226. We estimate a = 1.079+0.002, from which follows 
A:  = 1.080k0.002. From lattice-lattice scaling it follows (Betts er al 1971) that the 
amplitude for the other lattices A:,, will be given by 

A,',, = A:,Fccg:5'8/nx? (4.2) 

so from the n, and g, values in table 6 and the above result for A:,,,, we find 

A:  = 1.09-10.02 (BCC) 

A: = 1.105&0*015 (SC) (4.3) 
A: = 1.128&0.017 (D). 

It was found by Sykes er al(1972b) that estimates for the specific heat amplitudes on these 
lattices were not readily extrapolable, the values they gave being derived from the last 
available coefficient. Thus while they were able to  construct good mimic functions, the 
true amplitudes are probably more accurately given by (4.3). 

Turning now to the high-temperature susceptibility series, the leading amplitudes C,' 
are given in table 1 with the results for the FCC, BCC and sc lattices as quoted by Sykes er 
a1 (1972a), and that for the diamond lattice as obtained in 5 2. In order to attempt to 
estimate the amplitude of the next most singular term, C: in the notation of I ,  we first 
turn to the FCC lattice. We follow the analysis of Sykes er a1 (1972a) by fitting the suscepti- 
bility series to the Darboux form : 
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Since the calculation by Sykes er aI using 13 terms of the susceptibility series, one further 
term has been added by Rapaport (1974). The resulting estimates of the parameters a, b 
and c are shown in table 7 using the full 14-term series. The value of u, quoted in table 1 

Table 7. Fitting the FCC susceptibility series to Darboux form (equation (4.4)) 

n a b e 

7 0.964672 0.1 1890 0.1329 
8 0,964405 0.13225 0.1797 
9 0.964047 0.15304 0,2663 

I O  0.963760 0.1 7 I 97 0.3578 
I 1  0,963565 0.18640 0.4372 
I2 0.963442 0.19648 0.4993 
13 0.963371 0,20285 0,5428 

has been used along with the value y = 3 .  Linear extrapolants of the ‘a’ column confirm 
the estimate of Sykes er al(1972a) that a = 0.963 +0@02, while linear extrapolants of the 
‘b’ column suggest b = 0.22 k 0.02. These results yield, in the notation of I, 

C: = 0.971 +0*002 c: = 0.21 k0.02. (4.5) 

Now from the generalized law of corresponding states, assuming it to hold for the next 
most singular term for the three-dimensional lattices, as it does for the regular two- 
dimensional lattices, the following (equivalent) results follow : 

(4.6) 

where B is the spontaneous magnetization amplitude. From (4.5) we find the constant 
in (4.6) to  be 16.4+ 1.8. For the two-dimensional lattices the corresponding constant is 
exactly 64. If the constant is an integer in the three-dimensional case also, 16 is the most 
likely contender. However, we see no compelling reason why it should be an integer. 
From the second relation in (4.6) we can estimate the amplitudes CT for the remaining 
lattices, and find 

c: = 0.22 & 0.03 (BCC), 0.27 k 0.03 (sc), 0.37 + 0.04 (D).  (4.7) 

If we write the susceptibility in terms of the usual high-temperature variable 
v = tanh(J/kT), so that 

the amplitudes in (4.7) translate to 

C1 = 0.25+0.03 (BCC), 0.33 If: 0.04 (sc), 0.55 k 0.06 (D). (4.9) 

Now Sykes et al(1972a) have obtained a sequence of estimates for c1 for the BCC and sc 
lattices, which they state are not sufficiently well converged to establish their limit. Now 
that we have an estimate of the limit in (4.9), it is instructive to study these sequences. 
For the BCC lattice the last sevenestimatesofc, are0~1210,0~1430,0~1444,0~1613,0~1651, 
0.1784, 0.1826. The limit quoted in (4.9) seems quite attainable. For the sc lattice, 
however, the sequence is considerably more erratic, the last eight estimates being 
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0-0405,0.0345, 0.0443, 0.0429, 0.0518, 0.0519,0.0587, 0.0590. These seem to increase in 
pairs and are clearly well away from the limit quoted in (4.9). This is possibly due to the 
more prominent effect of the antiferromagnetic singularity or, perhaps, to other singulari- 
ties lying outside the physical disc [U( 6 U, or it may even be that the generalized law of 
corresponding states does not hold for the next most singular term for the three-dimen- 
sional lattices. 

5. Conclusions 

We have studied a number of three-dimensional series and made several new amplitude 
estimates. These have in turn been used to provide new estimates for the field and 
temperature scaling parameters which form the basis of the Generalized Law of Cor- 
responding States. An earlier conjecture of Betts er al (1971) has been shown to be 
unlikely. The next most singular Ising susceptibility amplitudes and the specific heat 
amplitudes have been estimated for the common three-dimensional lattices. 
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